Nuprl Lemma : assert-fset-pairwise

[T:Type]. ∀[eq:EqDecider(T)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[s:fset(T)].
  uiff(↑fset-pairwise(x,y.R[x;y];s);∀x,y:T.  (↑R[x;y]) supposing (x ∈ and y ∈ s))


Proof




Definitions occuring in Statement :  fset-pairwise: fset-pairwise(x,y.R[x; y];s) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-pairwise: fset-pairwise(x,y.R[x; y];s) fset-all: fset-all(s;x.P[x]) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] prop: implies:  Q iff: ⇐⇒ Q rev_implies:  Q guard: {T} so_lambda: λ2y.t[x; y]
Lemmas referenced :  fset-all-iff iff_weakening_uiff fset-all_wf uall_wf isect_wf fset-member_wf assert_wf assert_witness fset-null_wf fset-filter_wf bnot_wf all_wf uiff_wf fset-pairwise_wf fset_wf bool_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule independent_pairFormation isect_memberFormation lambdaFormation hypothesis independent_isectElimination lambdaEquality applyEquality independent_functionElimination because_Cache productElimination isect_memberEquality cumulativity equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination addLevel functionEquality universeEquality independent_pairEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    uiff(\muparrow{}fset-pairwise(x,y.R[x;y];s);\mforall{}x,y:T.    (\muparrow{}R[x;y])  supposing  (x  \mmember{}  s  and  y  \mmember{}  s))



Date html generated: 2019_06_20-PM-01_59_27
Last ObjectModification: 2018_08_24-PM-11_34_36

Theory : finite!sets


Home Index