Nuprl Lemma : f-proper-subset_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys:fset(T)].  (xs ⊆≠ ys ∈ ℙ)


Proof




Definitions occuring in Statement :  f-proper-subset: xs ⊆≠ ys fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T f-proper-subset: xs ⊆≠ ys
Lemmas referenced :  and_wf f-subset_wf not_wf equal_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys:fset(T)].    (xs  \msubseteq{}\mneq{}  ys  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-03_41_52
Last ObjectModification: 2015_12_26-PM-06_40_05

Theory : finite!sets


Home Index