Nuprl Lemma : f-proper-subset_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys:fset(T)].  (xs ⊆≠ ys ∈ ℙ)
Proof
Definitions occuring in Statement : 
f-proper-subset: xs ⊆≠ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
f-proper-subset: xs ⊆≠ ys
Lemmas referenced : 
and_wf, 
f-subset_wf, 
not_wf, 
equal_wf, 
fset_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys:fset(T)].    (xs  \msubseteq{}\mneq{}  ys  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-03_41_52
Last ObjectModification:
2015_12_26-PM-06_40_05
Theory : finite!sets
Home
Index