Nuprl Lemma : assert-f-proper-subset-dec
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys:fset(T)].  uiff(↑f-proper-subset-dec(eq;xs;ys);xs ⊆≠ ys)
Proof
Definitions occuring in Statement : 
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys)
, 
f-proper-subset: xs ⊆≠ ys
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
f-proper-subset: xs ⊆≠ ys
, 
f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys)
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
f-subset: xs ⊆ ys
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
deq: EqDecider(T)
Lemmas referenced : 
equal_wf, 
fset_wf, 
fset-member_witness, 
fset-member_wf, 
f-subset_wf, 
not_wf, 
assert_wf, 
band_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
bnot_wf, 
deq-fset_wf, 
deq_wf, 
uiff_wf, 
f-proper-subset-dec_wf, 
f-proper-subset_wf, 
assert_witness, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert-deq-f-subset, 
assert_of_bnot, 
assert-deq-fset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
functionExtensionality, 
universeEquality, 
addLevel, 
independent_isectElimination, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys:fset(T)].    uiff(\muparrow{}f-proper-subset-dec(eq;xs;ys);xs  \msubseteq{}\mneq{}  ys)
Date html generated:
2017_04_17-AM-09_20_23
Last ObjectModification:
2017_02_27-PM-05_23_18
Theory : finite!sets
Home
Index