Nuprl Lemma : assert-f-proper-subset-dec

[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys:fset(T)].  uiff(↑f-proper-subset-dec(eq;xs;ys);xs ⊆≠ ys)


Proof




Definitions occuring in Statement :  f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys) f-proper-subset: xs ⊆≠ ys fset: fset(T) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  f-proper-subset: xs ⊆≠ ys f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False prop: uall: [x:A]. B[x] f-subset: xs ⊆ ys all: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q deq: EqDecider(T)
Lemmas referenced :  equal_wf fset_wf fset-member_witness fset-member_wf f-subset_wf not_wf assert_wf band_wf deq-f-subset_wf bool_wf all_wf iff_wf bnot_wf deq-fset_wf deq_wf uiff_wf f-proper-subset-dec_wf f-proper-subset_wf assert_witness iff_transitivity iff_weakening_uiff assert_of_band assert-deq-f-subset assert_of_bnot assert-deq-fset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis lambdaFormation independent_functionElimination voidElimination extract_by_obid isectElimination cumulativity hypothesisEquality sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry productEquality because_Cache applyEquality setElimination rename setEquality functionEquality functionExtensionality universeEquality addLevel independent_isectElimination impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys:fset(T)].    uiff(\muparrow{}f-proper-subset-dec(eq;xs;ys);xs  \msubseteq{}\mneq{}  ys)



Date html generated: 2017_04_17-AM-09_20_23
Last ObjectModification: 2017_02_27-PM-05_23_18

Theory : finite!sets


Home Index