Nuprl Lemma : assert-deq-fset
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:fset(T)].  uiff(↑(deq-fset(eq) x y);x = y ∈ fset(T))
Proof
Definitions occuring in Statement : 
deq-fset: deq-fset(eq)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
deq: EqDecider(T)
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
deq-fset_wf, 
deq_wf, 
fset_wf, 
equal_wf, 
assert_wf, 
assert_witness, 
sq_stable__uiff, 
sq_stable_from_decidable, 
decidable__assert, 
sq_stable__equal
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
because_Cache, 
independent_pairFormation, 
isect_memberFormation, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:fset(T)].    uiff(\muparrow{}(deq-fset(eq)  x  y);x  =  y)
Date html generated:
2017_04_17-AM-09_20_18
Last ObjectModification:
2017_02_27-PM-05_23_14
Theory : finite!sets
Home
Index