Nuprl Lemma : fset-ac-le_transitivity

[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac1,ac2,ac3:fset(fset(T))].
  (fset-ac-le(eq;ac1;ac3)) supposing (fset-ac-le(eq;ac1;ac2) and fset-ac-le(eq;ac2;ac3))


Proof




Definitions occuring in Statement :  fset-ac-le: fset-ac-le(eq;ac1;ac2) fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  fset-ac-le: fset-ac-le(eq;ac1;ac2) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] prop: implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) fset-all: fset-all(s;x.P[x]) rev_uimplies: rev_uimplies(P;Q) not: ¬A false: False all: x:A. B[x] top: Top guard: {T} cand: c∧ B squash: T true: True
Lemmas referenced :  fset-all-iff fset_wf deq-fset_wf iff_weakening_uiff fset-all_wf bnot_wf fset-null_wf fset-filter_wf deq-f-subset_wf fset-member_wf assert_wf assert_witness deq_wf istype-universe assert_of_bnot equal-wf-T-base assert-fset-null istype-assert fset-extensionality mem_empty_lemma istype-void member-fset-filter assert-deq-f-subset fset-member_witness f-subset_transitivity squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :lambdaEquality_alt,  applyEquality setElimination rename Error :inhabitedIsType,  equalityTransitivity equalitySymmetry Error :universeIsType,  because_Cache isectEquality independent_functionElimination productElimination independent_isectElimination Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate universeEquality Error :lambdaFormation_alt,  baseClosed voidElimination Error :equalityIstype,  sqequalBase dependent_functionElimination independent_pairFormation independent_pairEquality imageElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac1,ac2,ac3:fset(fset(T))].
    (fset-ac-le(eq;ac1;ac3))  supposing  (fset-ac-le(eq;ac1;ac2)  and  fset-ac-le(eq;ac2;ac3))



Date html generated: 2019_06_20-PM-01_59_39
Last ObjectModification: 2019_01_01-AM-09_30_42

Theory : finite!sets


Home Index