Nuprl Lemma : f-subset_transitivity

[T:Type]. ∀[eq:EqDecider(T)]. ∀[xs,ys,zs:fset(T)].  (xs ⊆ zs) supposing (ys ⊆ zs and xs ⊆ ys)


Proof




Definitions occuring in Statement :  f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  f-subset: xs ⊆ ys uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  fset-member_witness fset-member_wf all_wf isect_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis lambdaEquality dependent_functionElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[xs,ys,zs:fset(T)].    (xs  \msubseteq{}  zs)  supposing  (ys  \msubseteq{}  zs  and  xs  \msubseteq{}  ys)



Date html generated: 2016_05_14-PM-03_38_28
Last ObjectModification: 2015_12_26-PM-06_42_10

Theory : finite!sets


Home Index