Nuprl Lemma : fset-ac-glb_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac1,ac2:{ac:fset(fset(T))| ↑fset-antichain(eq;ac)} ].
  (fset-ac-glb(eq;ac1;ac2) ∈ {ac:fset(fset(T))| ↑fset-antichain(eq;ac)} )
Proof
Definitions occuring in Statement : 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
fset-minimals-antichain, 
f-union_wf, 
fset_wf, 
deq-fset_wf, 
fset-image_wf, 
fset-union_wf, 
fset-minimals_wf, 
f-proper-subset-dec_wf, 
assert_wf, 
fset-antichain_wf, 
set_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
lambdaEquality, 
dependent_set_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac1,ac2:\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ].
    (fset-ac-glb(eq;ac1;ac2)  \mmember{}  \{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  )
Date html generated:
2016_05_14-PM-03_49_17
Last ObjectModification:
2015_12_26-PM-06_36_14
Theory : finite!sets
Home
Index