Nuprl Lemma : fset-image_wf

[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[s:fset(T)].  (f"(s) ∈ fset(A))


Proof




Definitions occuring in Statement :  fset-image: f"(s) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-image: f"(s) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  f-union_wf fset-singleton_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[s:fset(T)].    (f"(s)  \mmember{}  fset(A))



Date html generated: 2016_05_14-PM-03_43_50
Last ObjectModification: 2015_12_26-PM-06_38_59

Theory : finite!sets


Home Index