Nuprl Lemma : f-union_wf
∀[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[g:T ⟶ fset(A)]. ∀[s:fset(T)].
  (f-union(eqt;eqa;s;x.g[x]) ∈ fset(A))
Proof
Definitions occuring in Statement : 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
comm: Comm(T;op)
, 
infix_ap: x f y
, 
assoc: Assoc(T;op)
Lemmas referenced : 
fset_wf, 
equal-wf-base, 
list_wf, 
set-equal_wf, 
deq_wf, 
list_accum-set-equal-idemp, 
fset-union_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fset-union-idempotent, 
iff_weakening_equal, 
nil_wf, 
list_subtype_fset, 
fset-union-commutes, 
fset-union-associative
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
productEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
lambdaEquality, 
independent_isectElimination, 
lambdaFormation, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
voidEquality, 
voidElimination
Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[g:T  {}\mrightarrow{}  fset(A)].  \mforall{}[s:fset(T)].
    (f-union(eqt;eqa;s;x.g[x])  \mmember{}  fset(A))
Date html generated:
2017_04_17-AM-09_19_05
Last ObjectModification:
2017_02_27-PM-05_22_32
Theory : finite!sets
Home
Index