Nuprl Lemma : f-union_wf

[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[g:T ⟶ fset(A)]. ∀[s:fset(T)].
  (f-union(eqt;eqa;s;x.g[x]) ∈ fset(A))


Proof




Definitions occuring in Statement :  f-union: f-union(domeq;rngeq;s;x.g[x]) fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q f-union: f-union(domeq;rngeq;s;x.g[x]) prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q comm: Comm(T;op) infix_ap: y assoc: Assoc(T;op)
Lemmas referenced :  fset_wf equal-wf-base list_wf set-equal_wf deq_wf list_accum-set-equal-idemp fset-union_wf equal_wf squash_wf true_wf fset-union-idempotent iff_weakening_equal nil_wf list_subtype_fset fset-union-commutes fset-union-associative
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination productEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality universeEquality lambdaEquality independent_isectElimination lambdaFormation applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination voidEquality voidElimination

Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[g:T  {}\mrightarrow{}  fset(A)].  \mforall{}[s:fset(T)].
    (f-union(eqt;eqa;s;x.g[x])  \mmember{}  fset(A))



Date html generated: 2017_04_17-AM-09_19_05
Last ObjectModification: 2017_02_27-PM-05_22_32

Theory : finite!sets


Home Index