Nuprl Lemma : list_accum-set-equal-idemp

[T:Type]. ∀[eq:EqDecider(T)]. ∀[A:Type]. ∀[g:T ⟶ A]. ∀[f:A ⟶ A ⟶ A].
  (∀[as,bs:T List].
     ∀[n:A]
       (accumulate (with value and list item z):
         f[a;g[z]]
        over list:
          as
        with starting value:
         n)
       accumulate (with value and list item z):
          f[a;g[z]]
         over list:
           bs
         with starting value:
          n)
       ∈ A) 
     supposing set-equal(T;as;bs)) supposing 
     ((∀x:A. (f[x;x] x ∈ A)) and 
     Assoc(A;λx,y. f[x;y]) and 
     Comm(A;λx,y. f[x;y]))


Proof




Definitions occuring in Statement :  set-equal: set-equal(T;x;y) list_accum: list_accum list: List deq: EqDecider(T) comm: Comm(T;op) assoc: Assoc(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q set-equal: set-equal(T;x;y)
Lemmas referenced :  list_accum-remove-repeats set-equal_wf list_wf all_wf equal_wf assoc_wf comm_wf deq_wf list_accum_set-equal remove-repeats_wf remove-repeats-no_repeats squash_wf true_wf iff_weakening_equal member-remove-repeats l_member_wf iff_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination sqequalRule isect_memberEquality axiomEquality because_Cache cumulativity equalityTransitivity equalitySymmetry lambdaEquality applyEquality functionExtensionality functionEquality universeEquality natural_numberEquality dependent_functionElimination imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination lambdaFormation addLevel independent_pairFormation impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[A:Type].  \mforall{}[g:T  {}\mrightarrow{}  A].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (\mforall{}[as,bs:T  List].
          \mforall{}[n:A]
              (accumulate  (with  value  a  and  list  item  z):
                  f[a;g[z]]
                over  list:
                    as
                with  starting  value:
                  n)
              =  accumulate  (with  value  a  and  list  item  z):
                    f[a;g[z]]
                  over  list:
                      bs
                  with  starting  value:
                    n)) 
          supposing  set-equal(T;as;bs))  supposing 
          ((\mforall{}x:A.  (f[x;x]  =  x))  and 
          Assoc(A;\mlambda{}x,y.  f[x;y])  and 
          Comm(A;\mlambda{}x,y.  f[x;y]))



Date html generated: 2017_04_17-AM-09_11_53
Last ObjectModification: 2017_02_27-PM-05_19_25

Theory : decidable!equality


Home Index