Nuprl Lemma : remove-repeats-no_repeats
∀T:Type. ∀eq:EqDecider(T). ∀L:T List. no_repeats(T;remove-repeats(eq;L))
Proof
Definitions occuring in Statement :
remove-repeats: remove-repeats(eq;L)
,
no_repeats: no_repeats(T;l)
,
list: T List
,
deq: EqDecider(T)
,
all: ∀x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
top: Top
,
deq: EqDecider(T)
,
prop: ℙ
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
uimplies: b supposing a
,
cand: A c∧ B
,
not: ¬A
,
iff: P
⇐⇒ Q
,
false: False
Lemmas referenced :
list_induction,
no_repeats_wf,
remove-repeats_wf,
list_wf,
remove_repeats_nil_lemma,
no_repeats_nil,
remove_repeats_cons_lemma,
no_repeats_cons,
filter_wf5,
bnot_wf,
l_member_wf,
no_repeats_filter,
member_filter_2,
assert_of_bnot,
deq_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
cut,
thin,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
hypothesis,
independent_functionElimination,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
rename,
applyEquality,
setElimination,
setEquality,
productElimination,
independent_isectElimination,
because_Cache,
independent_pairFormation,
universeEquality
Latex:
\mforall{}T:Type. \mforall{}eq:EqDecider(T). \mforall{}L:T List. no\_repeats(T;remove-repeats(eq;L))
Date html generated:
2016_05_14-PM-03_26_46
Last ObjectModification:
2015_12_26-PM-06_23_30
Theory : decidable!equality
Home
Index