Nuprl Lemma : remove-repeats-no_repeats
∀T:Type. ∀eq:EqDecider(T). ∀L:T List.  no_repeats(T;remove-repeats(eq;L))
Proof
Definitions occuring in Statement : 
remove-repeats: remove-repeats(eq;L)
, 
no_repeats: no_repeats(T;l)
, 
list: T List
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
deq: EqDecider(T)
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
false: False
Lemmas referenced : 
list_induction, 
no_repeats_wf, 
remove-repeats_wf, 
list_wf, 
remove_repeats_nil_lemma, 
no_repeats_nil, 
remove_repeats_cons_lemma, 
no_repeats_cons, 
filter_wf5, 
bnot_wf, 
l_member_wf, 
no_repeats_filter, 
member_filter_2, 
assert_of_bnot, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
applyEquality, 
setElimination, 
setEquality, 
productElimination, 
independent_isectElimination, 
because_Cache, 
independent_pairFormation, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.    no\_repeats(T;remove-repeats(eq;L))
Date html generated:
2016_05_14-PM-03_26_46
Last ObjectModification:
2015_12_26-PM-06_23_30
Theory : decidable!equality
Home
Index