Nuprl Lemma : fset-union-associative

[A:Type]. ∀[eqa:EqDecider(A)]. ∀[x,y,z:fset(A)].  (x ⋃ y ⋃ x ⋃ y ⋃ z ∈ fset(A))


Proof




Definitions occuring in Statement :  fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q prop: rev_implies:  Q
Lemmas referenced :  fset-extensionality fset-union_wf member-fset-union or_wf fset-member_wf fset-member_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_pairFormation because_Cache dependent_functionElimination independent_functionElimination addLevel orFunctionality promote_hyp unionElimination inlFormation inrFormation sqequalRule independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[x,y,z:fset(A)].    (x  \mcup{}  y  \mcup{}  z  =  x  \mcup{}  y  \mcup{}  z)



Date html generated: 2016_05_14-PM-03_38_37
Last ObjectModification: 2015_12_26-PM-06_42_19

Theory : finite!sets


Home Index