Nuprl Lemma : member-fset-union

[T:Type]. ∀eq:EqDecider(T). ∀x,y:fset(T). ∀a:T.  (a ∈ x ⋃ ⇐⇒ a ∈ x ∨ a ∈ y)


Proof




Definitions occuring in Statement :  fset-union: x ⋃ y fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T decidable: Dec(P) or: P ∨ Q fset: fset(T) prop: quotient: x,y:A//B[x; y] not: ¬A fset-union: x ⋃ y fset-member: a ∈ s false: False uimplies: supposing a sq_type: SQType(T) guard: {T} true: True rev_implies:  Q
Lemmas referenced :  decidable__or fset-member_wf decidable__fset-member list_wf set-equal_wf set-equal-reflex assert-deq-member l-union_wf equal_wf subtype_base_sq int_subtype_base fset-union_wf fset-member_witness fset_wf deq_wf istype-universe member-union istype-assert deq-member_wf l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination dependent_functionElimination because_Cache unionElimination Error :universeIsType,  promote_hyp Error :inhabitedIsType,  pointwiseFunctionality sqequalRule pertypeElimination productElimination equalityTransitivity equalitySymmetry voidElimination Error :productIsType,  Error :equalityIsType4,  intEquality natural_numberEquality instantiate cumulativity independent_isectElimination Error :unionIsType,  universeEquality Error :inlFormation_alt,  Error :inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}x,y:fset(T).  \mforall{}a:T.    (a  \mmember{}  x  \mcup{}  y  \mLeftarrow{}{}\mRightarrow{}  a  \mmember{}  x  \mvee{}  a  \mmember{}  y)



Date html generated: 2019_06_20-PM-01_58_42
Last ObjectModification: 2018_11_23-PM-02_42_33

Theory : finite!sets


Home Index