Nuprl Lemma : member-fset-union
∀[T:Type]. ∀eq:EqDecider(T). ∀x,y:fset(T). ∀a:T. (a ∈ x ⋃ y
⇐⇒ a ∈ x ∨ a ∈ y)
Proof
Definitions occuring in Statement :
fset-union: x ⋃ y
,
fset-member: a ∈ s
,
fset: fset(T)
,
deq: EqDecider(T)
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
or: P ∨ Q
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
member: t ∈ T
,
decidable: Dec(P)
,
or: P ∨ Q
,
fset: fset(T)
,
prop: ℙ
,
quotient: x,y:A//B[x; y]
,
not: ¬A
,
fset-union: x ⋃ y
,
fset-member: a ∈ s
,
false: False
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
true: True
,
rev_implies: P
⇐ Q
Lemmas referenced :
decidable__or,
fset-member_wf,
decidable__fset-member,
list_wf,
set-equal_wf,
set-equal-reflex,
assert-deq-member,
l-union_wf,
equal_wf,
subtype_base_sq,
int_subtype_base,
fset-union_wf,
fset-member_witness,
fset_wf,
deq_wf,
istype-universe,
member-union,
istype-assert,
deq-member_wf,
l_member_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
Error :lambdaFormation_alt,
independent_pairFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
independent_functionElimination,
dependent_functionElimination,
because_Cache,
unionElimination,
Error :universeIsType,
promote_hyp,
Error :inhabitedIsType,
pointwiseFunctionality,
sqequalRule,
pertypeElimination,
productElimination,
equalityTransitivity,
equalitySymmetry,
voidElimination,
Error :productIsType,
Error :equalityIsType4,
intEquality,
natural_numberEquality,
instantiate,
cumulativity,
independent_isectElimination,
Error :unionIsType,
universeEquality,
Error :inlFormation_alt,
Error :inrFormation_alt
Latex:
\mforall{}[T:Type]. \mforall{}eq:EqDecider(T). \mforall{}x,y:fset(T). \mforall{}a:T. (a \mmember{} x \mcup{} y \mLeftarrow{}{}\mRightarrow{} a \mmember{} x \mvee{} a \mmember{} y)
Date html generated:
2019_06_20-PM-01_58_42
Last ObjectModification:
2018_11_23-PM-02_42_33
Theory : finite!sets
Home
Index