Nuprl Lemma : fset-union_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:fset(T)].  (x ⋃ y ∈ fset(T))
Proof
Definitions occuring in Statement : 
fset-union: x ⋃ y
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
fset-union: x ⋃ y
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
set-equal: set-equal(T;x;y)
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
quotient-member-eq, 
list_wf, 
set-equal_wf, 
set-equal-equiv, 
l-union_wf, 
equal-wf-base, 
fset_wf, 
deq_wf, 
l_member_wf, 
or_wf, 
member-union, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
because_Cache, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
productEquality, 
cumulativity, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality, 
lambdaFormation, 
independent_pairFormation, 
unionElimination, 
inlFormation, 
inrFormation, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:fset(T)].    (x  \mcup{}  y  \mmember{}  fset(T))
Date html generated:
2016_05_14-PM-03_38_31
Last ObjectModification:
2015_12_26-PM-06_42_38
Theory : finite!sets
Home
Index