Nuprl Lemma : fset-union_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:fset(T)].  (x ⋃ y ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q fset-union: x ⋃ y so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] implies:  Q prop: set-equal: set-equal(T;x;y) iff: ⇐⇒ Q or: P ∨ Q guard: {T} rev_implies:  Q
Lemmas referenced :  quotient-member-eq list_wf set-equal_wf set-equal-equiv l-union_wf equal-wf-base fset_wf deq_wf l_member_wf or_wf member-union iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache sqequalRule pertypeElimination productElimination thin lemma_by_obid isectElimination hypothesisEquality hypothesis lambdaEquality independent_isectElimination dependent_functionElimination independent_functionElimination productEquality cumulativity axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality lambdaFormation independent_pairFormation unionElimination inlFormation inrFormation addLevel impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:fset(T)].    (x  \mcup{}  y  \mmember{}  fset(T))



Date html generated: 2016_05_14-PM-03_38_31
Last ObjectModification: 2015_12_26-PM-06_42_38

Theory : finite!sets


Home Index