Nuprl Lemma : l-union_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[as,bs:T List].  (as ⋃ bs ∈ List)


Proof




Definitions occuring in Statement :  l-union: as ⋃ bs list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l-union: as ⋃ bs
Lemmas referenced :  reduce_wf list_wf insert_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[as,bs:T  List].    (as  \mcup{}  bs  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-03_24_30
Last ObjectModification: 2015_12_26-PM-06_21_46

Theory : decidable!equality


Home Index