Nuprl Lemma : fset-union-commutes

[A:Type]. ∀[eqa:EqDecider(A)]. ∀[x,y:fset(A)].  (x ⋃ y ⋃ x ∈ fset(A))


Proof




Definitions occuring in Statement :  fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q implies:  Q or: P ∨ Q guard: {T} prop:
Lemmas referenced :  fset-extensionality fset-union_wf member-fset-union fset-member_wf fset-member_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination because_Cache sqequalRule isect_memberEquality axiomEquality independent_pairFormation dependent_functionElimination independent_functionElimination unionElimination inrFormation inlFormation independent_pairEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[x,y:fset(A)].    (x  \mcup{}  y  =  y  \mcup{}  x)



Date html generated: 2016_05_14-PM-03_38_36
Last ObjectModification: 2015_12_26-PM-06_42_05

Theory : finite!sets


Home Index