Nuprl Lemma : fset-union-commutes
∀[A:Type]. ∀[eqa:EqDecider(A)]. ∀[x,y:fset(A)].  (x ⋃ y = y ⋃ x ∈ fset(A))
Proof
Definitions occuring in Statement : 
fset-union: x ⋃ y
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
fset-extensionality, 
fset-union_wf, 
member-fset-union, 
fset-member_wf, 
fset-member_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
inrFormation, 
inlFormation, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[x,y:fset(A)].    (x  \mcup{}  y  =  y  \mcup{}  x)
Date html generated:
2016_05_14-PM-03_38_36
Last ObjectModification:
2015_12_26-PM-06_42_05
Theory : finite!sets
Home
Index