Nuprl Lemma : fset-union-idempotent

[A:Type]. ∀[eqa:EqDecider(A)]. ∀[x:fset(A)].  (x ⋃ x ∈ fset(A))


Proof




Definitions occuring in Statement :  fset-union: x ⋃ y fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset-extensionality fset-union_wf fset-member_witness fset-member_wf fset_wf deq_wf member-fset-union
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination independent_pairFormation because_Cache independent_functionElimination sqequalRule independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality universeEquality unionElimination inlFormation dependent_functionElimination

Latex:
\mforall{}[A:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[x:fset(A)].    (x  \mcup{}  x  =  x)



Date html generated: 2016_05_14-PM-03_38_39
Last ObjectModification: 2015_12_26-PM-06_41_58

Theory : finite!sets


Home Index