Step * of Lemma fset-union-idempotent

[A:Type]. ∀[eqa:EqDecider(A)]. ∀[x:fset(A)].  (x ⋃ x ∈ fset(A))
BY
((Auto THEN (Using [`eq',⌜eqa⌝(BLemma `fset-extensionality` )⋅ THENA Auto))
   THEN Auto
   THEN (RWW "member-fset-union" THENM RWW "member-fset-union" (-1))
   THEN Auto
   THEN ProveProp
   THEN Auto) }


Latex:


Latex:
\mforall{}[A:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[x:fset(A)].    (x  \mcup{}  x  =  x)


By


Latex:
((Auto  THEN  (Using  [`eq',\mkleeneopen{}eqa\mkleeneclose{}]  (BLemma  `fset-extensionality`  )\mcdot{}  THENA  Auto))
  THEN  Auto
  THEN  (RWW  "member-fset-union"  0  THENM  RWW  "member-fset-union"  (-1))
  THEN  Auto
  THEN  ProveProp
  THEN  Auto)




Home Index