Nuprl Lemma : fset-singleton_wf

[T:Type]. ∀[x:T].  ({x} ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-singleton: {x} fset: fset(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  fset-singleton: {x} uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  cons_wf nil_wf list_subtype_fset
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache independent_isectElimination lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    (\{x\}  \mmember{}  fset(T))



Date html generated: 2016_05_14-PM-03_38_47
Last ObjectModification: 2015_12_26-PM-06_41_56

Theory : finite!sets


Home Index