Nuprl Lemma : fset-singleton_wf
∀[T:Type]. ∀[x:T].  ({x} ∈ fset(T))
Proof
Definitions occuring in Statement : 
fset-singleton: {x}
, 
fset: fset(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
fset-singleton: {x}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
cons_wf, 
nil_wf, 
list_subtype_fset
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].    (\{x\}  \mmember{}  fset(T))
Date html generated:
2016_05_14-PM-03_38_47
Last ObjectModification:
2015_12_26-PM-06_41_56
Theory : finite!sets
Home
Index