Nuprl Lemma : fset-minimals-antichain

[T:Type]
  ∀eq:EqDecider(T). ∀s:fset(fset(T)).  (↑fset-antichain(eq;fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys); s)))


Proof




Definitions occuring in Statement :  fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-antichain: fset-antichain(eq;ac) f-proper-subset-dec: f-proper-subset-dec(eq;xs;ys) fset: fset(T) deq: EqDecider(T) assert: b uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False f-proper-subset: xs ⊆≠ ys prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  assert-fset-antichain fset-minimals_wf fset_wf f-proper-subset-dec_wf f-proper-subset_wf fset-member_wf deq-fset_wf deq_wf assert_witness fset-antichain_wf member-fset-minimals fset-all-iff bnot_wf assert_wf not_wf iff_transitivity iff_weakening_uiff assert_of_bnot assert-f-proper-subset-dec
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality productElimination independent_isectElimination because_Cache independent_functionElimination voidElimination dependent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry universeEquality independent_pairFormation impliesFunctionality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(fset(T)).
        (\muparrow{}fset-antichain(eq;fset-minimals(xs,ys.f-proper-subset-dec(eq;xs;ys);  s)))



Date html generated: 2016_05_14-PM-03_47_52
Last ObjectModification: 2015_12_26-PM-06_36_29

Theory : finite!sets


Home Index