Nuprl Lemma : member-fset-minimals

[T:Type]. ∀[eq:EqDecider(T)]. ∀[less:T ⟶ T ⟶ 𝔹]. ∀[s:fset(T)]. ∀[a:T].
  uiff(a ∈ fset-minimals(x,y.less[x;y]; s);a ∈ s ∧ fset-all(s;y.¬bless[y;a]))


Proof




Definitions occuring in Statement :  fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-all: fset-all(s;x.P[x]) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) bnot: ¬bb bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s1;s2] and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-minimals: fset-minimals(x,y.less[x; y]; s) guard: {T} uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q fset-all: fset-all(s;x.P[x]) so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] prop: so_lambda: λ2y.t[x; y] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset-member_witness assert_witness fset-null_wf fset-filter_wf bnot_wf and_wf fset-member_wf fset-all_wf assert-fset-minimal assert_wf fset-minimal_wf uiff_wf iff_weakening_uiff guard_wf member-fset-filter fset-minimals_wf fset_wf bool_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut independent_pairFormation isect_memberFormation introduction sqequalHypSubstitution productElimination thin hypothesis sqequalRule independent_pairEquality lemma_by_obid isectElimination because_Cache independent_functionElimination hypothesisEquality lambdaEquality applyEquality addLevel independent_isectElimination cumulativity functionEquality universeEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[less:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].  \mforall{}[a:T].
    uiff(a  \mmember{}  fset-minimals(x,y.less[x;y];  s);a  \mmember{}  s  \mwedge{}  fset-all(s;y.\mneg{}\msubb{}less[y;a]))



Date html generated: 2016_05_14-PM-03_47_37
Last ObjectModification: 2015_12_26-PM-06_36_34

Theory : finite!sets


Home Index