Nuprl Lemma : assert-fset-minimal

[T:Type]. ∀[less:T ⟶ T ⟶ 𝔹]. ∀[s:fset(T)]. ∀[a:T].  uiff(↑fset-minimal(x,y.less[x;y];s;a);fset-all(s;y.¬bless[y;a]))


Proof




Definitions occuring in Statement :  fset-minimal: fset-minimal(x,y.less[x; y];s;a) fset-all: fset-all(s;x.P[x]) fset: fset(T) bnot: ¬bb assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fset-all: fset-all(s;x.P[x]) fset-minimal: fset-minimal(x,y.less[x; y];s;a) uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: squash: T so_lambda: λ2x.t[x] so_apply: x[s1;s2] true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_apply: x[s]
Lemmas referenced :  assert_wf squash_wf true_wf bool_wf fset-null_wf fset-filter_wf equal_wf bnot_bnot_elim iff_weakening_equal assert_witness bnot_wf fset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation hypothesis hyp_replacement thin equalitySymmetry applyEquality lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity because_Cache functionExtensionality cumulativity natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination independent_functionElimination independent_pairEquality isect_memberEquality functionEquality

Latex:
\mforall{}[T:Type].  \mforall{}[less:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].  \mforall{}[a:T].
    uiff(\muparrow{}fset-minimal(x,y.less[x;y];s;a);fset-all(s;y.\mneg{}\msubb{}less[y;a]))



Date html generated: 2017_04_17-AM-09_23_24
Last ObjectModification: 2017_02_27-PM-05_25_00

Theory : finite!sets


Home Index