Nuprl Lemma : assert-fset-minimal
∀[T:Type]. ∀[less:T ⟶ T ⟶ 𝔹]. ∀[s:fset(T)]. ∀[a:T].  uiff(↑fset-minimal(x,y.less[x;y];s;a);fset-all(s;y.¬bless[y;a]))
Proof
Definitions occuring in Statement : 
fset-minimal: fset-minimal(x,y.less[x; y];s;a)
, 
fset-all: fset-all(s;x.P[x])
, 
fset: fset(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
fset-all: fset-all(s;x.P[x])
, 
fset-minimal: fset-minimal(x,y.less[x; y];s;a)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
Lemmas referenced : 
assert_wf, 
squash_wf, 
true_wf, 
bool_wf, 
fset-null_wf, 
fset-filter_wf, 
equal_wf, 
bnot_bnot_elim, 
iff_weakening_equal, 
assert_witness, 
bnot_wf, 
fset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
hyp_replacement, 
thin, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
because_Cache, 
functionExtensionality, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[T:Type].  \mforall{}[less:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].  \mforall{}[a:T].
    uiff(\muparrow{}fset-minimal(x,y.less[x;y];s;a);fset-all(s;y.\mneg{}\msubb{}less[y;a]))
Date html generated:
2017_04_17-AM-09_23_24
Last ObjectModification:
2017_02_27-PM-05_25_00
Theory : finite!sets
Home
Index