Nuprl Lemma : lattice-fset-join_wf

[l:BoundedLattice]. ((∀x,y:Point(l).  Dec(x y ∈ Point(l)))  (∀[s:fset(Point(l))]. (\/(s) ∈ Point(l))))


Proof




Definitions occuring in Statement :  lattice-fset-join: \/(s) bdd-lattice: BoundedLattice lattice-point: Point(l) fset: fset(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q subtype_rel: A ⊆B bdd-lattice: BoundedLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q fset: fset(T) quotient: x,y:A//B[x; y] nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top guard: {T} le: A ≤ B decidable: Dec(P) or: P ∨ Q less_than': less_than'(a;b) uiff: uiff(P;Q) cons: [a b] assert: b ifthenelse: if then else fi  btrue: tt lattice-fset-join: \/(s) bfalse: ff deq: EqDecider(T) squash: T true: True bool: 𝔹 unit: Unit it: eqof: eqof(d) bnot: ¬bb sq_type: SQType(T) lattice: Lattice
Lemmas referenced :  fset_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf all_wf decidable_wf equal_wf bdd-lattice_wf deq-exists list_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf set-equal_wf less_than_transitivity1 less_than_irreflexivity length_wf non_neg_length subtype_rel-equal decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf add_nat_wf length_wf_nat false_wf le_wf add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma decidable__lt equal-wf-base list-cases product_subtype_list set-equal-nil null_nil_lemma length_of_nil_lemma reduce_nil_lemma lattice-0_wf null_cons_lemma set-equal-cons2 filter_wf5 l_member_wf bnot_wf squash_wf true_wf length-filter-bnot iff_weakening_equal length_of_cons_lemma list_induction reduce_wf lattice-join_wf btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse reduce_cons_lemma filter_cons_lemma cons_wf filter_nil_lemma bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot lattice_wf lattice-join-idempotent lattice_properties cons_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality applyEquality instantiate lambdaEquality productEquality cumulativity independent_isectElimination because_Cache dependent_functionElimination isect_memberEquality productElimination independent_functionElimination rename promote_hyp pointwiseFunctionalityForEquality pertypeElimination setElimination intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll unionElimination dependent_set_memberEquality addEquality applyLambdaEquality pointwiseFunctionality baseApply closedConclusion baseClosed hypothesis_subsumption setEquality imageElimination imageMemberEquality universeEquality functionEquality equalityElimination equalityUniverse levelHypothesis hyp_replacement inlFormation

Latex:
\mforall{}[l:BoundedLattice].  ((\mforall{}x,y:Point(l).    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}[s:fset(Point(l))].  (\mbackslash{}/(s)  \mmember{}  Point(l))))



Date html generated: 2017_10_05-AM-00_33_40
Last ObjectModification: 2017_07_28-AM-09_13_51

Theory : lattices


Home Index