Nuprl Lemma : lattice-fset-join_wf
∀[l:BoundedLattice]. ((∀x,y:Point(l).  Dec(x = y ∈ Point(l))) 
⇒ (∀[s:fset(Point(l))]. (\/(s) ∈ Point(l))))
Proof
Definitions occuring in Statement : 
lattice-fset-join: \/(s)
, 
bdd-lattice: BoundedLattice
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
bdd-lattice: BoundedLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
guard: {T}
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
cons: [a / b]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
lattice-fset-join: \/(s)
, 
bfalse: ff
, 
deq: EqDecider(T)
, 
squash: ↓T
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
eqof: eqof(d)
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
lattice: Lattice
Lemmas referenced : 
fset_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
bdd-lattice_wf, 
deq-exists, 
list_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
set-equal_wf, 
less_than_transitivity1, 
less_than_irreflexivity, 
length_wf, 
non_neg_length, 
subtype_rel-equal, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
add_nat_wf, 
length_wf_nat, 
false_wf, 
le_wf, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
decidable__lt, 
equal-wf-base, 
list-cases, 
product_subtype_list, 
set-equal-nil, 
null_nil_lemma, 
length_of_nil_lemma, 
reduce_nil_lemma, 
lattice-0_wf, 
null_cons_lemma, 
set-equal-cons2, 
filter_wf5, 
l_member_wf, 
bnot_wf, 
squash_wf, 
true_wf, 
length-filter-bnot, 
iff_weakening_equal, 
length_of_cons_lemma, 
list_induction, 
reduce_wf, 
lattice-join_wf, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
reduce_cons_lemma, 
filter_cons_lemma, 
cons_wf, 
filter_nil_lemma, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
lattice_wf, 
lattice-join-idempotent, 
lattice_properties, 
cons_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
productElimination, 
independent_functionElimination, 
rename, 
promote_hyp, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
setElimination, 
intWeakElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
dependent_set_memberEquality, 
addEquality, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesis_subsumption, 
setEquality, 
imageElimination, 
imageMemberEquality, 
universeEquality, 
functionEquality, 
equalityElimination, 
equalityUniverse, 
levelHypothesis, 
hyp_replacement, 
inlFormation
Latex:
\mforall{}[l:BoundedLattice].  ((\mforall{}x,y:Point(l).    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}[s:fset(Point(l))].  (\mbackslash{}/(s)  \mmember{}  Point(l))))
Date html generated:
2017_10_05-AM-00_33_40
Last ObjectModification:
2017_07_28-AM-09_13_51
Theory : lattices
Home
Index