Nuprl Lemma : bdd-lattice_wf

BoundedLattice ∈ 𝕌'


Proof




Definitions occuring in Statement :  bdd-lattice: BoundedLattice member: t ∈ T universe: Type
Definitions unfolded in proof :  bdd-lattice: BoundedLattice member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q prop:
Lemmas referenced :  bounded-lattice-structure_wf and_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep setEquality cut lemma_by_obid hypothesis cumulativity sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality

Latex:
BoundedLattice  \mmember{}  \mBbbU{}'



Date html generated: 2016_05_18-AM-11_20_25
Last ObjectModification: 2015_12_28-PM-02_03_25

Theory : lattices


Home Index