Nuprl Lemma : length-filter-bnot
∀[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  (||filter(λa.(¬bP[a]);L)|| = (||L|| - ||filter(λa.P[a];L)||) ∈ ℤ)
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
length: ||as||
, 
filter: filter(P;l)
, 
list: T List
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
decidable: Dec(P)
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
sq_type: SQType(T)
, 
assert: ↑b
Lemmas referenced : 
list_induction, 
uall_wf, 
l_member_wf, 
bool_wf, 
equal_wf, 
length_wf, 
filter_wf5, 
bnot_wf, 
subtract_wf, 
list_wf, 
filter_nil_lemma, 
length_of_nil_lemma, 
nil_wf, 
filter_cons_lemma, 
length_of_cons_lemma, 
subtype_rel_dep_function, 
cons_wf, 
subtype_rel_sets, 
cons_member, 
subtype_rel_self, 
set_wf, 
eqtt_to_assert, 
decidable__equal_int, 
subtract-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
false_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
setEquality, 
cumulativity, 
because_Cache, 
hypothesis, 
lambdaFormation, 
setElimination, 
rename, 
intEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
independent_isectElimination, 
productElimination, 
inrFormation, 
inlFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
instantiate, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].
    (||filter(\mlambda{}a.(\mneg{}\msubb{}P[a]);L)||  =  (||L||  -  ||filter(\mlambda{}a.P[a];L)||))
Date html generated:
2017_04_17-AM-08_58_52
Last ObjectModification:
2017_02_27-PM-05_15_43
Theory : list_1
Home
Index