Nuprl Lemma : length-filter-bnot

[T:Type]. ∀[L:T List]. ∀[P:{x:T| (x ∈ L)}  ⟶ 𝔹].  (||filter(λa.(¬bP[a]);L)|| (||L|| ||filter(λa.P[a];L)||) ∈ ℤ)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) length: ||as|| filter: filter(P;l) list: List bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: all: x:A. B[x] so_apply: x[s] implies:  Q top: Top subtract: m subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bnot: ¬bb ifthenelse: if then else fi  bfalse: ff decidable: Dec(P) false: False satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A sq_type: SQType(T) assert: b
Lemmas referenced :  list_induction uall_wf l_member_wf bool_wf equal_wf length_wf filter_wf5 bnot_wf subtract_wf list_wf filter_nil_lemma length_of_nil_lemma nil_wf filter_cons_lemma length_of_cons_lemma subtype_rel_dep_function cons_wf subtype_rel_sets cons_member subtype_rel_self set_wf eqtt_to_assert decidable__equal_int subtract-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermSubtract_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality setEquality cumulativity because_Cache hypothesis lambdaFormation setElimination rename intEquality applyEquality functionExtensionality dependent_set_memberEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality independent_isectElimination productElimination inrFormation inlFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed dependent_pairFormation int_eqEquality independent_pairFormation computeAll instantiate axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}].
    (||filter(\mlambda{}a.(\mneg{}\msubb{}P[a]);L)||  =  (||L||  -  ||filter(\mlambda{}a.P[a];L)||))



Date html generated: 2017_04_17-AM-08_58_52
Last ObjectModification: 2017_02_27-PM-05_15_43

Theory : list_1


Home Index