Nuprl Lemma : member-fset-image-iff
∀[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[s:fset(T)]. ∀[a:A].
  uiff(a ∈ f"(s);↓∃x:T. (x ∈ s ∧ (a = (f x) ∈ A)))
Proof
Definitions occuring in Statement : 
fset-image: f"(s)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fset-image: f"(s)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
fset-member_wf, 
fset-image_wf, 
squash_wf, 
exists_wf, 
equal_wf, 
fset_wf, 
deq_wf, 
fset-member_witness, 
member-fset-singleton, 
fset-singleton_wf, 
uiff_wf, 
iff_weakening_uiff, 
f-union_wf, 
member-f-union
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
addLevel, 
independent_pairFormation, 
independent_isectElimination, 
existsFunctionality, 
andLevelFunctionality
Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[s:fset(T)].  \mforall{}[a:A].
    uiff(a  \mmember{}  f"(s);\mdownarrow{}\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (a  =  (f  x))))
Date html generated:
2017_04_17-AM-09_20_50
Last ObjectModification:
2017_02_27-PM-05_24_05
Theory : finite!sets
Home
Index