Nuprl Lemma : member-fset-image-iff

[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[s:fset(T)]. ∀[a:A].
  uiff(a ∈ f"(s);↓∃x:T. (x ∈ s ∧ (a (f x) ∈ A)))


Proof




Definitions occuring in Statement :  fset-image: f"(s) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  fset-image: f"(s) member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uiff: uiff(P;Q) uimplies: supposing a squash: T implies:  Q exists: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset-member_wf fset-image_wf squash_wf exists_wf equal_wf fset_wf deq_wf fset-member_witness member-fset-singleton fset-singleton_wf uiff_wf iff_weakening_uiff f-union_wf member-f-union
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality functionExtensionality applyEquality hypothesis sqequalRule lambdaEquality productEquality because_Cache functionEquality universeEquality isect_memberFormation productElimination independent_pairEquality isect_memberEquality imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination addLevel independent_pairFormation independent_isectElimination existsFunctionality andLevelFunctionality

Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[s:fset(T)].  \mforall{}[a:A].
    uiff(a  \mmember{}  f"(s);\mdownarrow{}\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (a  =  (f  x))))



Date html generated: 2017_04_17-AM-09_20_50
Last ObjectModification: 2017_02_27-PM-05_24_05

Theory : finite!sets


Home Index