Nuprl Lemma : member-f-union

[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[g:T ⟶ fset(A)]. ∀[s:fset(T)]. ∀[a:A].
  uiff(a ∈ f-union(eqt;eqa;s;x.g[x]);↓∃x:T. (x ∈ s ∧ a ∈ g[x]))


Proof




Definitions occuring in Statement :  f-union: f-union(domeq;rngeq;s;x.g[x]) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] squash: T and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q fset: fset(T) exists: x:A. B[x] quotient: x,y:A//B[x; y] all: x:A. B[x] iff: ⇐⇒ Q cand: c∧ B subtype_rel: A ⊆B guard: {T} fset-member: a ∈ s rev_implies:  Q decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) true: True false: False not: ¬A
Lemmas referenced :  fset-member_wf f-union_wf fset-member_witness squash_wf exists_wf fset_wf deq_wf equal-wf-base list_wf set-equal_wf member-f-union-aux l_exists_iff l_member_wf list_subtype_fset assert-deq-member decidable__fset-member subtype_base_sq int_subtype_base set-equal-reflex equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination cumulativity lambdaEquality applyEquality functionExtensionality independent_functionElimination productEquality productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality universeEquality pointwiseFunctionalityForEquality pertypeElimination dependent_functionElimination setElimination rename setEquality dependent_pairFormation independent_isectElimination unionElimination instantiate intEquality natural_numberEquality voidElimination promote_hyp lambdaFormation pointwiseFunctionality

Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[g:T  {}\mrightarrow{}  fset(A)].  \mforall{}[s:fset(T)].  \mforall{}[a:A].
    uiff(a  \mmember{}  f-union(eqt;eqa;s;x.g[x]);\mdownarrow{}\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  a  \mmember{}  g[x]))



Date html generated: 2017_04_17-AM-09_19_10
Last ObjectModification: 2017_02_27-PM-05_22_45

Theory : finite!sets


Home Index