Nuprl Lemma : member-f-union-aux

[T,A:Type].
  ∀eqt:EqDecider(T). ∀eqa:EqDecider(A). ∀g:T ⟶ fset(A). ∀L:T List. ∀a:A.
    (a ∈ f-union(eqt;eqa;L;x.g[x]) ⇐⇒ (∃x∈L. a ∈ g[x]))


Proof




Definitions occuring in Statement :  f-union: f-union(domeq;rngeq;s;x.g[x]) fset-member: a ∈ s fset: fset(T) l_exists: (∃x∈L. P[x]) list: List deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] f-union: f-union(domeq;rngeq;s;x.g[x]) member: t ∈ T so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s] so_apply: x[s1;s2] prop: implies:  Q top: Top iff: ⇐⇒ Q and: P ∧ Q guard: {T} or: P ∨ Q subtype_rel: A ⊆B rev_implies:  Q false: False not: ¬A fset-member: a ∈ s assert: b ifthenelse: if then else fi  deq-member: x ∈b L reduce: reduce(f;k;as) list_ind: list_ind nil: [] it: bfalse: ff fset: fset(T) uimplies: supposing a
Lemmas referenced :  list_wf fset_wf deq_wf list_induction all_wf iff_wf fset-member_wf list_accum_wf fset-union_wf or_wf l_exists_wf l_member_wf list_accum_nil_lemma list_accum_cons_lemma l_exists_wf_nil fset-member_witness l_exists_nil l_exists_cons cons_wf member-fset-union set-equal_wf set-equal-equiv nil_wf set-equal-reflex quotient-member-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis functionEquality universeEquality sqequalRule lambdaEquality cumulativity because_Cache applyEquality setElimination rename setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation inrFormation introduction unionElimination productElimination addLevel allFunctionality impliesFunctionality orFunctionality inlFormation independent_isectElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T,A:Type].
    \mforall{}eqt:EqDecider(T).  \mforall{}eqa:EqDecider(A).  \mforall{}g:T  {}\mrightarrow{}  fset(A).  \mforall{}L:T  List.  \mforall{}a:A.
        (a  \mmember{}  f-union(eqt;eqa;L;x.g[x])  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}x\mmember{}L.  a  \mmember{}  g[x]))



Date html generated: 2016_05_14-PM-03_39_10
Last ObjectModification: 2015_12_26-PM-06_42_23

Theory : finite!sets


Home Index