Nuprl Lemma : member-fset-singleton
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:T].  uiff(y ∈ {x};y = x ∈ T)
Proof
Definitions occuring in Statement : 
fset-singleton: {x}, 
fset-member: a ∈ s, 
deq: EqDecider(T), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fset-singleton: {x}, 
fset-member: a ∈ s, 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
or: P ∨ Q, 
false: False, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
rev_implies: P ⇐ Q, 
eqof: eqof(d)
Lemmas referenced : 
deq_member_cons_lemma, 
deq_member_nil_lemma, 
false_wf, 
equal_wf, 
assert_wf, 
bor_wf, 
eqof_wf, 
bfalse_wf, 
or_wf, 
uiff_wf, 
fset-member_wf, 
fset-singleton_wf, 
deq_wf, 
fset-member_witness, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bor, 
safe-assert-deq, 
assert_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
independent_pairFormation, 
isect_memberFormation, 
unionElimination, 
equalitySymmetry, 
because_Cache, 
axiomEquality, 
rename, 
inlFormation, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
universeEquality, 
productElimination, 
independent_pairEquality, 
equalityTransitivity, 
independent_functionElimination, 
addLevel, 
independent_isectElimination, 
lambdaFormation, 
orFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:T].    uiff(y  \mmember{}  \{x\};y  =  x)
Date html generated:
2017_04_17-AM-09_18_55
Last ObjectModification:
2017_02_27-PM-05_22_22
Theory : finite!sets
Home
Index