Nuprl Lemma : member-fset-singleton

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x,y:T].  uiff(y ∈ {x};y x ∈ T)


Proof




Definitions occuring in Statement :  fset-singleton: {x} fset-member: a ∈ s deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  fset-singleton: {x} fset-member: a ∈ s all: x:A. B[x] member: t ∈ T top: Top uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a or: P ∨ Q false: False prop: uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q assert: b ifthenelse: if then else fi  bfalse: ff rev_implies:  Q eqof: eqof(d)
Lemmas referenced :  deq_member_cons_lemma deq_member_nil_lemma false_wf equal_wf assert_wf bor_wf eqof_wf bfalse_wf or_wf uiff_wf fset-member_wf fset-singleton_wf deq_wf fset-member_witness iff_transitivity iff_weakening_uiff assert_of_bor safe-assert-deq assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis independent_pairFormation isect_memberFormation unionElimination equalitySymmetry because_Cache axiomEquality rename inlFormation isectElimination cumulativity hypothesisEquality applyEquality universeEquality productElimination independent_pairEquality equalityTransitivity independent_functionElimination addLevel independent_isectElimination lambdaFormation orFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:T].    uiff(y  \mmember{}  \{x\};y  =  x)



Date html generated: 2017_04_17-AM-09_18_55
Last ObjectModification: 2017_02_27-PM-05_22_22

Theory : finite!sets


Home Index