Nuprl Lemma : bdd-distributive-lattice-subtype-bdd-lattice

BoundedDistributiveLattice ⊆BoundedLattice


Proof




Definitions occuring in Statement :  bdd-distributive-lattice: BoundedDistributiveLattice bdd-lattice: BoundedLattice subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T bdd-distributive-lattice: BoundedDistributiveLattice bdd-lattice: BoundedLattice and: P ∧ Q uall: [x:A]. B[x] prop:
Lemmas referenced :  and_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-distributive-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution setElimination thin rename cut dependent_set_memberEquality hypothesisEquality productElimination hypothesis lemma_by_obid isectElimination applyEquality sqequalRule

Latex:
BoundedDistributiveLattice  \msubseteq{}r  BoundedLattice



Date html generated: 2016_05_18-AM-11_21_26
Last ObjectModification: 2015_12_28-PM-02_03_17

Theory : lattices


Home Index