Nuprl Lemma : fset-ac-le-implies2
∀[T:Type]
  ∀eq:EqDecider(T). ∀ac1,ac2:fset(fset(T)).
    (fset-ac-le(eq;ac1;ac2) 
⇒ {∀a:fset(T). (a ∈ ac1 
⇒ (↓∃b:fset(T). (b ∈ ac2 ∧ b ⊆ a)))})
Proof
Definitions occuring in Statement : 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
deq-fset: deq-fset(eq)
, 
f-subset: xs ⊆ ys
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
deq_wf, 
fset-ac-le_wf, 
deq-fset_wf, 
fset_wf, 
fset-member_wf, 
fset-ac-le-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
lambdaEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}ac1,ac2:fset(fset(T)).
        (fset-ac-le(eq;ac1;ac2)  {}\mRightarrow{}  \{\mforall{}a:fset(T).  (a  \mmember{}  ac1  {}\mRightarrow{}  (\mdownarrow{}\mexists{}b:fset(T).  (b  \mmember{}  ac2  \mwedge{}  b  \msubseteq{}  a)))\})
Date html generated:
2016_05_14-PM-03_43_15
Last ObjectModification:
2016_01_20-PM-02_32_52
Theory : finite!sets
Home
Index