Nuprl Lemma : fset-ac-le-implies2

[T:Type]
  ∀eq:EqDecider(T). ∀ac1,ac2:fset(fset(T)).
    (fset-ac-le(eq;ac1;ac2)  {∀a:fset(T). (a ∈ ac1  (↓∃b:fset(T). (b ∈ ac2 ∧ b ⊆ a)))})


Proof




Definitions occuring in Statement :  fset-ac-le: fset-ac-le(eq;ac1;ac2) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] guard: {T} all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q guard: {T} uimplies: supposing a squash: T prop:
Lemmas referenced :  deq_wf fset-ac-le_wf deq-fset_wf fset_wf fset-member_wf fset-ac-le-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis productElimination independent_functionElimination independent_isectElimination imageElimination sqequalRule imageMemberEquality baseClosed lambdaEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}ac1,ac2:fset(fset(T)).
        (fset-ac-le(eq;ac1;ac2)  {}\mRightarrow{}  \{\mforall{}a:fset(T).  (a  \mmember{}  ac1  {}\mRightarrow{}  (\mdownarrow{}\mexists{}b:fset(T).  (b  \mmember{}  ac2  \mwedge{}  b  \msubseteq{}  a)))\})



Date html generated: 2016_05_14-PM-03_43_15
Last ObjectModification: 2016_01_20-PM-02_32_52

Theory : finite!sets


Home Index