Nuprl Lemma : fset-ac-le-iff
∀[T:Type]
  ∀eq:EqDecider(T). ∀ac1,ac2:fset(fset(T)).
    (fset-ac-le(eq;ac1;ac2) 
⇐⇒ ∀[a:fset(T)]. ↓∃b:fset(T). (b ∈ ac2 ∧ b ⊆ a) supposing a ∈ ac1)
Proof
Definitions occuring in Statement : 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
deq-fset: deq-fset(eq)
, 
f-subset: xs ⊆ ys
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
fset-ac-le: fset-ac-le(eq;ac1;ac2)
, 
ac-covers: ac-covers(eq;ac;x)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
fset-all: fset-all(s;x.P[x])
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
fset-all-iff, 
fset_wf, 
deq-fset_wf, 
ac-covers_wf, 
fset-all_wf, 
uall_wf, 
isect_wf, 
fset-member_wf, 
squash_wf, 
exists_wf, 
f-subset_wf, 
iff_wf, 
assert_wf, 
deq_wf, 
fset-ac-le_wf, 
assert_witness, 
fset-null_wf, 
fset-filter_wf, 
bnot_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_weakening_uiff, 
assert-ac-covers
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
addLevel, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
lambdaEquality, 
independent_isectElimination, 
productEquality, 
dependent_functionElimination, 
independent_pairEquality, 
isect_memberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
because_Cache, 
universeEquality, 
cumulativity, 
promote_hyp, 
isectEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}ac1,ac2:fset(fset(T)).
        (fset-ac-le(eq;ac1;ac2)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}[a:fset(T)].  \mdownarrow{}\mexists{}b:fset(T).  (b  \mmember{}  ac2  \mwedge{}  b  \msubseteq{}  a)  supposing  a  \mmember{}  ac1)
Date html generated:
2019_06_20-PM-01_59_33
Last ObjectModification:
2018_08_24-PM-11_40_43
Theory : finite!sets
Home
Index