Nuprl Lemma : fset-ac-le-iff

[T:Type]
  ∀eq:EqDecider(T). ∀ac1,ac2:fset(fset(T)).
    (fset-ac-le(eq;ac1;ac2) ⇐⇒ ∀[a:fset(T)]. ↓∃b:fset(T). (b ∈ ac2 ∧ b ⊆ a) supposing a ∈ ac1)


Proof




Definitions occuring in Statement :  fset-ac-le: fset-ac-le(eq;ac1;ac2) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q squash: T and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] fset-ac-le: fset-ac-le(eq;ac1;ac2) ac-covers: ac-covers(eq;ac;x) iff: ⇐⇒ Q and: P ∧ Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) uimplies: supposing a prop: rev_implies:  Q exists: x:A. B[x] squash: T fset-all: fset-all(s;x.P[x]) subtype_rel: A ⊆B
Lemmas referenced :  fset-all-iff fset_wf deq-fset_wf ac-covers_wf fset-all_wf uall_wf isect_wf fset-member_wf squash_wf exists_wf f-subset_wf iff_wf assert_wf deq_wf fset-ac-le_wf assert_witness fset-null_wf fset-filter_wf bnot_wf deq-f-subset_wf bool_wf all_wf iff_weakening_uiff assert-ac-covers
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis addLevel productElimination independent_pairFormation independent_functionElimination lambdaEquality independent_isectElimination productEquality dependent_functionElimination independent_pairEquality isect_memberEquality imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyEquality setElimination rename setEquality functionEquality because_Cache universeEquality cumulativity promote_hyp isectEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}ac1,ac2:fset(fset(T)).
        (fset-ac-le(eq;ac1;ac2)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}[a:fset(T)].  \mdownarrow{}\mexists{}b:fset(T).  (b  \mmember{}  ac2  \mwedge{}  b  \msubseteq{}  a)  supposing  a  \mmember{}  ac1)



Date html generated: 2019_06_20-PM-01_59_33
Last ObjectModification: 2018_08_24-PM-11_40_43

Theory : finite!sets


Home Index