Nuprl Lemma : assert-ac-covers

[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac:fset(fset(T))]. ∀[x:fset(T)].
  uiff(↑ac-covers(eq;ac;x);↓∃y:fset(T). (y ∈ ac ∧ y ⊆ x))


Proof




Definitions occuring in Statement :  ac-covers: ac-covers(eq;ac;x) deq-fset: deq-fset(eq) f-subset: xs ⊆ ys fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T prop: implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] ac-covers: ac-covers(eq;ac;x) subtype_rel: A ⊆B iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q not: ¬A decidable: Dec(P) or: P ∨ Q false: False exists: x:A. B[x] cand: c∧ B rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  assert_wf ac-covers_wf assert_witness squash_wf exists_wf fset_wf fset-member_wf deq-fset_wf f-subset_wf deq_wf assert_of_bnot fset-null_wf fset-filter_wf deq-f-subset_wf bool_wf all_wf iff_wf assert-fset-null equal-wf-T-base fset-filter-is-empty not_wf decidable__squash_exists_fset decidable__f-subset assert-deq-f-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis sqequalHypSubstitution imageElimination sqequalRule imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination cumulativity independent_functionElimination lambdaEquality productEquality productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality applyEquality setElimination rename setEquality functionEquality functionExtensionality independent_isectElimination lambdaFormation promote_hyp dependent_functionElimination unionElimination voidElimination dependent_pairFormation addLevel impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac:fset(fset(T))].  \mforall{}[x:fset(T)].
    uiff(\muparrow{}ac-covers(eq;ac;x);\mdownarrow{}\mexists{}y:fset(T).  (y  \mmember{}  ac  \mwedge{}  y  \msubseteq{}  x))



Date html generated: 2017_04_17-AM-09_20_32
Last ObjectModification: 2017_02_27-PM-05_23_38

Theory : finite!sets


Home Index