Nuprl Lemma : assert-ac-covers
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac:fset(fset(T))]. ∀[x:fset(T)].
  uiff(↑ac-covers(eq;ac;x);↓∃y:fset(T). (y ∈ ac ∧ y ⊆ x))
Proof
Definitions occuring in Statement : 
ac-covers: ac-covers(eq;ac;x)
, 
deq-fset: deq-fset(eq)
, 
f-subset: xs ⊆ ys
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ac-covers: ac-covers(eq;ac;x)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
assert_wf, 
ac-covers_wf, 
assert_witness, 
squash_wf, 
exists_wf, 
fset_wf, 
fset-member_wf, 
deq-fset_wf, 
f-subset_wf, 
deq_wf, 
assert_of_bnot, 
fset-null_wf, 
fset-filter_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
assert-fset-null, 
equal-wf-T-base, 
fset-filter-is-empty, 
not_wf, 
decidable__squash_exists_fset, 
decidable__f-subset, 
assert-deq-f-subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
imageElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
extract_by_obid, 
isectElimination, 
cumulativity, 
independent_functionElimination, 
lambdaEquality, 
productEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
functionExtensionality, 
independent_isectElimination, 
lambdaFormation, 
promote_hyp, 
dependent_functionElimination, 
unionElimination, 
voidElimination, 
dependent_pairFormation, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac:fset(fset(T))].  \mforall{}[x:fset(T)].
    uiff(\muparrow{}ac-covers(eq;ac;x);\mdownarrow{}\mexists{}y:fset(T).  (y  \mmember{}  ac  \mwedge{}  y  \msubseteq{}  x))
Date html generated:
2017_04_17-AM-09_20_32
Last ObjectModification:
2017_02_27-PM-05_23_38
Theory : finite!sets
Home
Index