Nuprl Lemma : ac-covers_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac:fset(fset(T))]. ∀[x:fset(T)].  (ac-covers(eq;ac;x) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
ac-covers: ac-covers(eq;ac;x)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ac-covers: ac-covers(eq;ac;x)
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
deq_wf, 
assert_wf, 
f-subset_wf, 
iff_wf, 
all_wf, 
bool_wf, 
deq-f-subset_wf, 
fset-filter_wf, 
fset_wf, 
fset-null_wf, 
bnot_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac:fset(fset(T))].  \mforall{}[x:fset(T)].    (ac-covers(eq;ac;x)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-PM-03_42_51
Last ObjectModification:
2016_01_20-PM-02_16_29
Theory : finite!sets
Home
Index