Nuprl Lemma : decidable__squash_exists_fset
∀[T:Type]. ∀[P:T ⟶ ℙ].  ∀eq:EqDecider(T). ∀s:fset(T).  ((∀x:T. Dec(P[x])) 
⇒ Dec(↓∃x:T. (x ∈ s ∧ P[x])))
Proof
Definitions occuring in Statement : 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
isl: isl(x)
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
bfalse: ff
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
fset: fset(T)
, 
exists: ∃x:A. B[x]
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
, 
fset-member: a ∈ s
, 
top: Top
Lemmas referenced : 
decidable_wf, 
isl_wf, 
not_wf, 
equal_wf, 
assert_elim, 
bfalse_wf, 
btrue_neq_bfalse, 
assert_wf, 
assert_witness, 
decidable__not, 
fset-null_wf, 
fset-filter_wf, 
decidable__assert, 
squash_wf, 
exists_wf, 
fset-member_wf, 
all_wf, 
fset_wf, 
deq_wf, 
equal-wf-base, 
list_wf, 
set-equal_wf, 
decidable__l_exists, 
assert-fset-null, 
list_subtype_fset, 
fset-filter-is-empty, 
l_exists_iff, 
l_member_wf, 
assert-deq-member, 
member-fset-filter, 
mem_empty_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
cut, 
applyEquality, 
functionExtensionality, 
sqequalHypSubstitution, 
hypothesisEquality, 
cumulativity, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
because_Cache, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
unionElimination, 
addLevel, 
voidEquality, 
inrEquality, 
independent_isectElimination, 
levelHypothesis, 
voidElimination, 
natural_numberEquality, 
lambdaEquality, 
inlFormation, 
productEquality, 
inrFormation, 
functionEquality, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
setElimination, 
setEquality, 
dependent_pairFormation, 
imageElimination, 
hyp_replacement, 
applyLambdaEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(T).    ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  Dec(\mdownarrow{}\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  P[x])))
Date html generated:
2017_04_17-AM-09_20_08
Last ObjectModification:
2017_02_27-PM-05_23_43
Theory : finite!sets
Home
Index