Nuprl Lemma : decidable__squash_exists_fset

[T:Type]. ∀[P:T ⟶ ℙ].  ∀eq:EqDecider(T). ∀s:fset(T).  ((∀x:T. Dec(P[x]))  Dec(↓∃x:T. (x ∈ s ∧ P[x])))


Proof




Definitions occuring in Statement :  fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B prop: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q uimplies: supposing a isl: isl(x) not: ¬A false: False rev_implies:  Q assert: b ifthenelse: if then else fi  btrue: tt true: True bfalse: ff so_lambda: λ2x.t[x] guard: {T} fset: fset(T) exists: x:A. B[x] quotient: x,y:A//B[x; y] squash: T uiff: uiff(P;Q) cand: c∧ B fset-member: a ∈ s top: Top
Lemmas referenced :  decidable_wf isl_wf not_wf equal_wf assert_elim bfalse_wf btrue_neq_bfalse assert_wf assert_witness decidable__not fset-null_wf fset-filter_wf decidable__assert squash_wf exists_wf fset-member_wf all_wf fset_wf deq_wf equal-wf-base list_wf set-equal_wf decidable__l_exists assert-fset-null list_subtype_fset fset-filter-is-empty l_exists_iff l_member_wf assert-deq-member member-fset-filter mem_empty_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename cut applyEquality functionExtensionality sqequalHypSubstitution hypothesisEquality cumulativity thin introduction extract_by_obid isectElimination hypothesis because_Cache sqequalRule equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination independent_pairFormation unionElimination addLevel voidEquality inrEquality independent_isectElimination levelHypothesis voidElimination natural_numberEquality lambdaEquality inlFormation productEquality inrFormation functionEquality universeEquality pointwiseFunctionalityForEquality pertypeElimination productElimination imageMemberEquality baseClosed setElimination setEquality dependent_pairFormation imageElimination hyp_replacement applyLambdaEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}eq:EqDecider(T).  \mforall{}s:fset(T).    ((\mforall{}x:T.  Dec(P[x]))  {}\mRightarrow{}  Dec(\mdownarrow{}\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  P[x])))



Date html generated: 2017_04_17-AM-09_20_08
Last ObjectModification: 2017_02_27-PM-05_23_43

Theory : finite!sets


Home Index