Nuprl Lemma : fset-filter-is-empty

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].
  uiff({x ∈ P[x]} {} ∈ fset(T);¬(∃x:T. (x ∈ s ∧ (↑P[x]))))


Proof




Definitions occuring in Statement :  empty-fset: {} fset-filter: {x ∈ P[x]} fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] not: ¬A and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False exists: x:A. B[x] prop: so_apply: x[s] so_lambda: λ2x.t[x] top: Top all: x:A. B[x] cand: c∧ B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  istype-universe fset-member_wf assert_wf fset-filter_wf not_wf exists_wf fset_wf bool_wf deq_wf mem_empty_lemma member-fset-filter fset-extensionality empty-fset_wf istype-void fset-member_witness assert_witness iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut independent_pairFormation Error :lambdaFormation_alt,  thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination sqequalRule Error :productIsType,  extract_by_obid isectElimination hypothesisEquality Error :universeIsType,  applyEquality Error :lambdaEquality_alt,  dependent_functionElimination because_Cache Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :equalityIsType3,  baseClosed productEquality productElimination independent_pairEquality Error :isect_memberEquality_alt,  equalityTransitivity equalitySymmetry axiomEquality Error :functionIsType,  universeEquality functionExtensionality lambdaEquality cumulativity lambdaFormation voidEquality isect_memberEquality applyLambdaEquality hyp_replacement independent_isectElimination promote_hyp Error :dependent_pairFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    uiff(\{x  \mmember{}  s  |  P[x]\}  =  \{\};\mneg{}(\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (\muparrow{}P[x]))))



Date html generated: 2019_06_20-PM-01_59_17
Last ObjectModification: 2018_10_06-PM-11_55_35

Theory : finite!sets


Home Index