Nuprl Lemma : fset-filter-is-empty
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].
  uiff({x ∈ s | P[x]} = {} ∈ fset(T);¬(∃x:T. (x ∈ s ∧ (↑P[x]))))
Proof
Definitions occuring in Statement : 
empty-fset: {}
, 
fset-filter: {x ∈ s | P[x]}
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
istype-universe, 
fset-member_wf, 
assert_wf, 
fset-filter_wf, 
not_wf, 
exists_wf, 
fset_wf, 
bool_wf, 
deq_wf, 
mem_empty_lemma, 
member-fset-filter, 
fset-extensionality, 
empty-fset_wf, 
istype-void, 
fset-member_witness, 
assert_witness, 
iff_weakening_uiff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
Error :productIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
Error :universeIsType, 
applyEquality, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
because_Cache, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :equalityIsType3, 
baseClosed, 
productEquality, 
productElimination, 
independent_pairEquality, 
Error :isect_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
Error :functionIsType, 
universeEquality, 
functionExtensionality, 
lambdaEquality, 
cumulativity, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
applyLambdaEquality, 
hyp_replacement, 
independent_isectElimination, 
promote_hyp, 
Error :dependent_pairFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    uiff(\{x  \mmember{}  s  |  P[x]\}  =  \{\};\mneg{}(\mexists{}x:T.  (x  \mmember{}  s  \mwedge{}  (\muparrow{}P[x]))))
Date html generated:
2019_06_20-PM-01_59_17
Last ObjectModification:
2018_10_06-PM-11_55_35
Theory : finite!sets
Home
Index