Nuprl Lemma : order-preserving-map-is-bounded-lattice-hom
∀[l1,l2:BoundedLattice]. ∀[f:Point(l1) ⟶ Point(l2)].
  f ∈ Hom(l1;l2) 
  supposing ((∀x,y:Point(l1).  (x ≤ y 
⇒ f x ≤ f y))
            ∧ (∀a,b:Point(l1).  f a ∧ f b ≤ f a ∧ b)
            ∧ (∀a,b:Point(l1).  f a ∨ b ≤ f a ∨ f b))
  ∧ ((f 0) = 0 ∈ Point(l2))
  ∧ ((f 1) = 1 ∈ Point(l2))
Proof
Definitions occuring in Statement : 
bounded-lattice-hom: Hom(l1;l2)
, 
bdd-lattice: BoundedLattice
, 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-le: a ≤ b
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
bounded-lattice-hom: Hom(l1;l2)
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
bdd-lattice: BoundedLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
lattice-hom: Hom(l1;l2)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
equal_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-0_wf, 
lattice-1_wf, 
all_wf, 
lattice-le_wf, 
lattice-meet_wf, 
lattice-join_wf, 
bdd-lattice_wf, 
order-preserving-map-is-lattice-hom, 
bdd-lattice-subtype-lattice
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_set_memberEquality, 
hypothesis, 
independent_pairFormation, 
productEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
functionExtensionality, 
isect_memberEquality
Latex:
\mforall{}[l1,l2:BoundedLattice].  \mforall{}[f:Point(l1)  {}\mrightarrow{}  Point(l2)].
    f  \mmember{}  Hom(l1;l2) 
    supposing  ((\mforall{}x,y:Point(l1).    (x  \mleq{}  y  {}\mRightarrow{}  f  x  \mleq{}  f  y))
                        \mwedge{}  (\mforall{}a,b:Point(l1).    f  a  \mwedge{}  f  b  \mleq{}  f  a  \mwedge{}  b)
                        \mwedge{}  (\mforall{}a,b:Point(l1).    f  a  \mvee{}  b  \mleq{}  f  a  \mvee{}  f  b))
    \mwedge{}  ((f  0)  =  0)
    \mwedge{}  ((f  1)  =  1)
Date html generated:
2017_10_05-AM-00_31_38
Last ObjectModification:
2017_07_28-AM-09_13_15
Theory : lattices
Home
Index