Nuprl Lemma : order-preserving-map-is-lattice-hom

[l1,l2:Lattice]. ∀[f:Point(l1) ⟶ Point(l2)].
  f ∈ Hom(l1;l2) 
  supposing (∀x,y:Point(l1).  (x ≤  x ≤ y))
  ∧ (∀a,b:Point(l1).  a ∧ b ≤ a ∧ b)
  ∧ (∀a,b:Point(l1).  a ∨ b ≤ a ∨ b)


Proof




Definitions occuring in Statement :  lattice-hom: Hom(l1;l2) lattice-le: a ≤ b lattice: Lattice lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q all: x:A. B[x] order: Order(T;x,y.R[x; y]) cand: c∧ B lattice: Lattice lattice-hom: Hom(l1;l2) so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q guard: {T} anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced :  lattice-le-order order-preserving-map-lattice-lemma lattice-point_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf all_wf lattice-le_wf lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid dependent_functionElimination hypothesisEquality isectElimination because_Cache independent_isectElimination hypothesis independent_pairFormation sqequalRule independent_pairEquality axiomEquality setElimination rename isect_memberEquality dependent_set_memberEquality lambdaEquality productEquality applyEquality functionExtensionality equalityTransitivity equalitySymmetry functionEquality independent_functionElimination

Latex:
\mforall{}[l1,l2:Lattice].  \mforall{}[f:Point(l1)  {}\mrightarrow{}  Point(l2)].
    f  \mmember{}  Hom(l1;l2) 
    supposing  (\mforall{}x,y:Point(l1).    (x  \mleq{}  y  {}\mRightarrow{}  f  x  \mleq{}  f  y))
    \mwedge{}  (\mforall{}a,b:Point(l1).    f  a  \mwedge{}  f  b  \mleq{}  f  a  \mwedge{}  b)
    \mwedge{}  (\mforall{}a,b:Point(l1).    f  a  \mvee{}  b  \mleq{}  f  a  \mvee{}  f  b)



Date html generated: 2017_10_05-AM-00_31_36
Last ObjectModification: 2017_07_28-AM-09_13_14

Theory : lattices


Home Index