Nuprl Lemma : lattice-le-order

l:Lattice. Order(Point(l);x,y.x ≤ y)


Proof




Definitions occuring in Statement :  lattice-le: a ≤ b lattice: Lattice lattice-point: Point(l) order: Order(T;x,y.R[x; y]) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] order: Order(T;x,y.R[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) member: t ∈ T uall: [x:A]. B[x] lattice: Lattice cand: c∧ B trans: Trans(T;x,y.E[x; y]) implies:  Q anti_sym: AntiSym(T;x,y.R[x; y]) uimplies: supposing a lattice-le: a ≤ b
Lemmas referenced :  lattice-point_wf lattice-le_wf lattice_wf lattice-le_weakening lattice-le_transitivity lattice_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache independent_isectElimination sqequalRule productElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}l:Lattice.  Order(Point(l);x,y.x  \mleq{}  y)



Date html generated: 2016_05_18-AM-11_22_09
Last ObjectModification: 2015_12_28-PM-02_03_01

Theory : lattices


Home Index