Nuprl Lemma : fset-antichain-singleton
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[s:fset(T)].  (↑fset-antichain(eq;{s}))
Proof
Definitions occuring in Statement : 
fset-antichain: fset-antichain(eq;ac)
, 
fset-singleton: {x}
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
f-proper-subset: xs ⊆≠ ys
Lemmas referenced : 
assert-fset-antichain, 
fset-singleton_wf, 
fset_wf, 
f-proper-subset_wf, 
fset-member_wf, 
deq-fset_wf, 
assert_witness, 
fset-antichain_wf, 
deq_wf, 
member-fset-singleton
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[s:fset(T)].    (\muparrow{}fset-antichain(eq;\{s\}))
Date html generated:
2016_05_14-PM-03_42_47
Last ObjectModification:
2015_12_26-PM-06_39_35
Theory : finite!sets
Home
Index