Nuprl Lemma : opposite-lattice-1
∀[L:Top]. (1 ~ 0)
Proof
Definitions occuring in Statement :
opposite-lattice: opposite-lattice(L)
,
lattice-0: 0
,
lattice-1: 1
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
opposite-lattice: opposite-lattice(L)
,
lattice-1: 1
,
so_lambda: λ2x y.t[x; y]
,
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice,
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
,
all: ∀x:A. B[x]
,
top: Top
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
btrue: tt
Lemmas referenced :
rec_select_update_lemma,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
sqequalAxiom
Latex:
\mforall{}[L:Top]. (1 \msim{} 0)
Date html generated:
2016_05_18-AM-11_26_37
Last ObjectModification:
2015_12_28-PM-02_00_47
Theory : lattices
Home
Index