Nuprl Lemma : opposite-lattice-1

[L:Top]. (1 0)


Proof




Definitions occuring in Statement :  opposite-lattice: opposite-lattice(L) lattice-0: 0 lattice-1: 1 uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T opposite-lattice: opposite-lattice(L) lattice-1: 1 so_lambda: λ2y.t[x; y] mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom

Latex:
\mforall{}[L:Top].  (1  \msim{}  0)



Date html generated: 2016_05_18-AM-11_26_37
Last ObjectModification: 2015_12_28-PM-02_00_47

Theory : lattices


Home Index