Nuprl Lemma : opposite-lattice-meet

[L,a,b:Top].  (a ∧ a ∨ b)


Proof




Definitions occuring in Statement :  opposite-lattice: opposite-lattice(L) lattice-join: a ∨ b lattice-meet: a ∧ b uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T opposite-lattice: opposite-lattice(L) lattice-meet: a ∧ b so_lambda: λ2y.t[x; y] mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) all: x:A. B[x] top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt
Lemmas referenced :  rec_select_update_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[L,a,b:Top].    (a  \mwedge{}  b  \msim{}  a  \mvee{}  b)



Date html generated: 2016_05_18-AM-11_28_04
Last ObjectModification: 2015_12_28-PM-02_00_41

Theory : lattices


Home Index