Nuprl Lemma : dm-neg-neg

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(free-DeMorgan-lattice(T;eq))].
  (x)) x ∈ Point(free-DeMorgan-lattice(T;eq)))


Proof




Definitions occuring in Statement :  dm-neg: ¬(x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a implies:  Q bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) cand: c∧ B compose: g dminc: <i> dmopp: <1-i> true: True squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  free-dist-lattice-hom-unique union-deq_wf free-DeMorgan-lattice_wf free-dml-deq_wf free-dl-inc_wf lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf free-dist-lattice_wf lattice-0_wf bdd-distributive-lattice_wf lattice-1_wf bdd-distributive-lattice-subtype-bdd-lattice opposite-lattice_wf compose-bounded-lattice-hom bounded-lattice-hom_wf dm-neg-is-hom dm-neg-is-hom-opposite dminc_wf dmopp_wf squash_wf true_wf dm-neg_wf dm-neg-inc iff_weakening_equal dm-neg-opp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin unionEquality cumulativity hypothesisEquality isectElimination hypothesis lambdaEquality applyEquality sqequalRule instantiate productEquality universeEquality because_Cache independent_isectElimination isect_memberEquality axiomEquality independent_functionElimination applyLambdaEquality setElimination rename equalitySymmetry dependent_set_memberEquality independent_pairFormation productElimination independent_pairEquality equalityTransitivity functionExtensionality comment unionElimination natural_numberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(free-DeMorgan-lattice(T;eq))].    (\mneg{}(\mneg{}(x))  =  x)



Date html generated: 2017_10_05-AM-00_41_59
Last ObjectModification: 2017_07_28-AM-09_16_56

Theory : lattices


Home Index