Nuprl Lemma : dm-neg-is-hom-opposite

[T:Type]. ∀[eq:EqDecider(T)].
  x.¬(x) ∈ Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq)))


Proof




Definitions occuring in Statement :  dm-neg: ¬(x) free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) opposite-lattice: opposite-lattice(L) bounded-lattice-hom: Hom(l1;l2) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a cand: c∧ B top: Top lattice-0: 0 record-select: r.x opposite-lattice: opposite-lattice(L) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt lattice-1: 1 free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) free-dist-lattice: free-dist-lattice(T; eq) fset-singleton: {x} cons: [a b] empty-fset: {} nil: [] it:
Lemmas referenced :  deq_wf dm-neg_wf subtype_rel-equal lattice-point_wf opposite-lattice_wf free-DeMorgan-lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf opposite-lattice-point opposite-lattice-meet dm-neg-properties opposite-lattice-join lattice-0_wf bdd-distributive-lattice_wf lattice-1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin cumulativity hypothesisEquality isect_memberEquality because_Cache universeEquality lambdaEquality applyEquality instantiate productEquality independent_isectElimination voidElimination voidEquality productElimination independent_pairFormation independent_pairEquality functionExtensionality setElimination rename

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    (\mlambda{}x.\mneg{}(x)  \mmember{}  Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq)))



Date html generated: 2017_10_05-AM-00_41_40
Last ObjectModification: 2017_07_28-AM-09_16_44

Theory : lattices


Home Index