Step * of Lemma dm-neg-is-hom-opposite

[T:Type]. ∀[eq:EqDecider(T)].
  x.¬(x) ∈ Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq)))
BY
(Auto THEN MemTypeCD) }

1
1. Type
2. eq EqDecider(T)
⊢ λx.¬(x) ∈ Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq))

2
.....set predicate..... 
1. Type
2. eq EqDecider(T)
⊢ (((λx.¬(x)) 0) 0 ∈ Point(free-DeMorgan-lattice(T;eq))) ∧ (((λx.¬(x)) 1) 1 ∈ Point(free-DeMorgan-lattice(T;eq)))

3
.....wf..... 
1. Type
2. eq EqDecider(T)
3. Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq))
⊢ ((f 0) 0 ∈ Point(free-DeMorgan-lattice(T;eq))) ∧ ((f 1) 1 ∈ Point(free-DeMorgan-lattice(T;eq))) ∈ Type


Latex:


Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].
    (\mlambda{}x.\mneg{}(x)  \mmember{}  Hom(opposite-lattice(free-DeMorgan-lattice(T;eq));free-DeMorgan-lattice(T;eq)))


By


Latex:
(Auto  THEN  MemTypeCD)




Home Index