Nuprl Lemma : dm-neg-inc

[T:Type]. ∀[eq:EqDecider(T)]. ∀[i:T].  (<i>= <1-i> ∈ Point(free-DeMorgan-lattice(T;eq)))


Proof




Definitions occuring in Statement :  dm-neg: ¬(x) dmopp: <1-i> dminc: <i> free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq) dm-neg: ¬(x) free-dl-inc: free-dl-inc(x) free-dml-deq: free-dml-deq(T;eq) dminc: <i> squash: T prop: subtype_rel: A ⊆B top: Top bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q dmopp: <1-i> fset-singleton: {x} cons: [a b]
Lemmas referenced :  deq_wf free-dl-inc_wf union-deq_wf equal_wf squash_wf true_wf lattice-point_wf free-dist-lattice_wf lattice-extend-dl-inc opposite-lattice_wf free-DeMorgan-lattice_wf opposite-lattice-point free-dml-deq_wf subtype_rel-equal subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf dmopp_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis hypothesisEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality because_Cache extract_by_obid cumulativity universeEquality lambdaEquality unionElimination unionEquality inrEquality inlEquality applyEquality imageElimination equalityTransitivity equalitySymmetry voidElimination voidEquality instantiate productEquality independent_isectElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[i:T].    (\mneg{}(<i>)  =  ə-i>)



Date html generated: 2017_10_05-AM-00_41_50
Last ObjectModification: 2017_07_28-AM-09_16_52

Theory : lattices


Home Index