Nuprl Lemma : lattice-extend-dl-inc

[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:BoundedDistributiveLattice]. ∀[eqL:EqDecider(Point(L))]. ∀[f:T ⟶ Point(L)]. ∀[x:T].
  (lattice-extend(L;eq;eqL;f;free-dl-inc(x)) (f x) ∈ Point(L))


Proof




Definitions occuring in Statement :  lattice-extend: lattice-extend(L;eq;eqL;f;ac) free-dl-inc: free-dl-inc(x) bdd-distributive-lattice: BoundedDistributiveLattice lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T free-dl-inc: free-dl-inc(x) lattice-extend: lattice-extend(L;eq;eqL;f;ac) top: Top subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a squash: T implies:  Q all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  fset-image-singleton lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf deq_wf bdd-distributive-lattice_wf squash_wf true_wf lattice-fset-join-singleton bdd-distributive-lattice-subtype-bdd-lattice lattice-fset-meet_wf decidable-equal-deq fset-singleton_wf iff_weakening_equal lattice-fset-meet-singleton
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis because_Cache hypothesisEquality axiomEquality functionEquality cumulativity applyEquality instantiate lambdaEquality productEquality universeEquality independent_isectElimination imageElimination equalityTransitivity equalitySymmetry independent_functionElimination lambdaFormation dependent_functionElimination functionExtensionality natural_numberEquality imageMemberEquality baseClosed productElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:BoundedDistributiveLattice].  \mforall{}[eqL:EqDecider(Point(L))].
\mforall{}[f:T  {}\mrightarrow{}  Point(L)].  \mforall{}[x:T].
    (lattice-extend(L;eq;eqL;f;free-dl-inc(x))  =  (f  x))



Date html generated: 2017_10_05-AM-00_35_08
Last ObjectModification: 2017_07_28-AM-09_14_33

Theory : lattices


Home Index