Nuprl Lemma : lattice-fset-join-singleton

[l:BoundedLattice]. ∀[x:Point(l)].  (\/({x}) x ∈ Point(l))


Proof




Definitions occuring in Statement :  lattice-fset-join: \/(s) bdd-lattice: BoundedLattice lattice-point: Point(l) fset-singleton: {x} uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] fset-singleton: {x} lattice-fset-join: \/(s) all: x:A. B[x] member: t ∈ T top: Top bdd-lattice: BoundedLattice and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: so_apply: x[s] uimplies: supposing a guard: {T} bounded-lattice-axioms: bounded-lattice-axioms(l)
Lemmas referenced :  reduce_cons_lemma reduce_nil_lemma lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf and_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf bdd-lattice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis setElimination rename productElimination isectElimination hypothesisEquality applyEquality instantiate lambdaEquality cumulativity independent_isectElimination

Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[x:Point(l)].    (\mbackslash{}/(\{x\})  =  x)



Date html generated: 2016_05_18-AM-11_24_23
Last ObjectModification: 2015_12_28-PM-02_01_26

Theory : lattices


Home Index