Nuprl Lemma : fset-image-singleton

[eqt,eqa,f,x:Top].  (f"({x}) {f x})


Proof




Definitions occuring in Statement :  fset-image: f"(s) fset-singleton: {x} uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset-singleton: {x} fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) all: x:A. B[x] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] fset-union: x ⋃ y l-union: as ⋃ bs
Lemmas referenced :  list_accum_cons_lemma list_accum_nil_lemma reduce_cons_lemma reduce_nil_lemma insert_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom isectElimination hypothesisEquality because_Cache

Latex:
\mforall{}[eqt,eqa,f,x:Top].    (f"(\{x\})  \msim{}  \{f  x\})



Date html generated: 2016_05_14-PM-03_43_52
Last ObjectModification: 2015_12_26-PM-06_39_00

Theory : finite!sets


Home Index