Nuprl Lemma : fset-image-singleton
∀[eqt,eqa,f,x:Top].  (f"({x}) ~ {f x})
Proof
Definitions occuring in Statement : 
fset-image: f"(s)
, 
fset-singleton: {x}
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset-singleton: {x}
, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
all: ∀x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
fset-union: x ⋃ y
, 
l-union: as ⋃ bs
Lemmas referenced : 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
reduce_cons_lemma, 
reduce_nil_lemma, 
insert_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
sqequalAxiom, 
isectElimination, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[eqt,eqa,f,x:Top].    (f"(\{x\})  \msim{}  \{f  x\})
Date html generated:
2016_05_14-PM-03_43_52
Last ObjectModification:
2015_12_26-PM-06_39_00
Theory : finite!sets
Home
Index