Nuprl Lemma : insert_nil_lemma
∀x,eq:Top.  (insert(x;[]) ~ [x])
Proof
Definitions occuring in Statement : 
insert: insert(a;L), 
cons: [a / b], 
nil: [], 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
insert: insert(a;L), 
eval_list: eval_list(t), 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
top: Top, 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
top_wf, 
eval_list_nil_lemma, 
deq_member_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
callbyvalueReduce, 
sqleReflexivity, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}x,eq:Top.    (insert(x;[])  \msim{}  [x])
Date html generated:
2016_05_14-AM-06_53_14
Last ObjectModification:
2015_12_26-PM-00_20_31
Theory : list_0
Home
Index